
1
State-transition diagramsThis material is from Chapter 8 in the textbook.
Example. An identi�er an be de�ned as a string of letters and digits that begins with aletter.

• Token letter stands for any of the symbols a, . . . , z, A, . . . , Z.
• Token digit stands for 0, 1, . . . , 9.The set of identi�ers is spei�ed by the state-transition diagram in Figure 1.

letter

letter, digitFigure 1: A state-diagram for speifying identi�ers.
Example. We design a \sequential lok" as desribed below. The lok has 1-bit sequentialinput. Initially, the lok is losed. If the lok is losed it will open when the last three inputbits are \1", \0", \1", and then remains open.In other words, the state-transition diagram should aept exatly all strings that ontainsubstring 101. The state-transition diagram will be onstruted in lass.What is a regular expression that denotes the same language?A state diagram desribes a deterministic finite automaton (DFA), a mahine thatat any given time is in one of �nitely many states, and whose state hanges aording to apredetermined way in response to a sequene of input symbols.

CISC/CMPE 223, Winter 2018, State-transition diagrams 2A formal de�nition is given below.
Definition. A DFA is de�ned as a tuple

M = (Q,�, δ, s, F)where the omponents are as follows:
• Q is the �nite nonempty set of states
• � is the input alphabet
• δ : Q× � −→ Q is the transition funtion
• s ∈ Q is the starting state
• F ⊆ Q is the set of aepting statesA �nite state automaton (DFA) is onveniently spei�ed using a state diagram, espeiallywhen the set of states is small.

Example. Consider the state diagram in Figure 2.
1

10

0

1

0

1

q1 q2

q3q
4

0

Figure 2: A state-transition diagram.In a formal notation this automaton an be spei�ed as
M = (Q,�, δ, s, F)

CISC/CMPE 223, Winter 2018, State-transition diagrams 3where
• the set of states is Q = {q1, q2, q3, q4},
• the input alphabet is � = {0, 1},
• the starting state is q0,
• the set of aepting states is {q3, q4}, and
• the transition funtion δ : Q× � −→ Q is given by the below transition table:Current state/input 0 1

q1 q1 q2
q2 q4 q3
q3 q3 q4
q4 q3 q1In a state diagram the starting state is denoted by a irle with an \inoming arrow"and an aepting state is denoted by a double irle.

Note: A state diagram has only one starting state. There an be more than one aeptingstates (or no aepting states).On the other hand, when a DFA is implemented a graphi state diagram notation is notsuÆient. One needs to, basially, give names for the states and enode the transition tablein the ode, see the examples in setion 8.2 of the textbook.
Definition. A state diagram (or DFA) accepts a string

c1c2 · . . . · cnif there is a path from the starting state to an aepting state that is labeled by symbols
c1, . . . , cn. The language recognized by the state diagram (or DFA) onsists of all stringsaepted by it.

CISC/CMPE 223, Winter 2018, State-transition diagrams 4
Example. Construt a state diagram for reognizing omments that may go over severallines:
/**/

Nondeterminism

• The state diagrams that we have onsidered up to now were deterministic: for anystate and input symbol pair there an be at most one outgoing transition.
• A nondeterministic state diagram allows the following type of situations:

b

bFigure 3: Nondeterministi transitions.
When dealing with nondeterministi state diagrams it is important to remember thatnow a given string may label more than one path beginning from the starting state and wehave to be areful how the aeptane of a string is de�ned:

Nondeterministic acceptance: a string is aepted if it appears on any path from the startingstate to an aepting state.

CISC/CMPE 223, Winter 2018, State-transition diagrams 5
Why nondeterminism?

• Often it is muh easier to onstrut a nondeterministi state diagram than a determin-isti one.
• A nondeterministi state diagram an be much smaller than the smallest possibledeterministi state diagram that reognizes the same language.
• On the other hand, it is not immediately lear how we an implement nondetermin-isti state diagrams sine program behavior is deterministi (or, at least, it should bedeterministi). Fortunately, there is a way to onvert a nondeterministi state diagraminto an equivalent deterministi one, and the onversion an even be automated.
Example. Consider the following nondeterministi state diagram with input alphabet
{0, 1}:

000

0, 10, 1

Figure 4: A nondeterministi state diagram.
– Where does the nondeterminism appear in the state diagram of Figure 4?
– What is the language reognized by the state diagram of Figure 4?
– How would you onstrut an equivalent DFA?Nondeterministi state diagrams are also alled nondeterministic finite automata, NFA.

CISC/CMPE 223, Winter 2018, State-transition diagrams 6An NFA an be implemented as a DFA using the so alled subset construction. Thesubset onstrution is explained on pages 179{181 in the textbook. We illustrate the subsetonstrution by applying it to the following example (to be done in lass).
Example. Consider the following NFA:

CBA
1

0, 1

00

0, 1

Figure 5: A nondeterministi state diagram.We onstrut a DFA that is equivalent to the NFA from Figure 5 using the subsetonstrution. The DFA keeps trak of the set of all possible states that the NFA may be inafter reading the urrent sequene of input symbols. The starting state is {A}. A set of statesis aepting if it ontains at least one aepting state of the original NFA. The transitions ofthe DFA are de�ned by following all possible nondeterministi transitions from the urrentstate (as explained on pages 179{181 in the textbook). The transition table and the statediagram of the DFA that is obtained by applying the subset onstrution to the NFA ofFigure 5 will be done in lass.
Question: How ould you simplify the resulting deterministi state diagram?
ε-transitionsSometimes it is onvenient to allow in nondeterministi state diagrams transitions thatdo not read an input token (\spontaneous" transitions). These are alled ε-transitions.
Note: A deterministi state diagram annot have ε-transitions.

CISC/CMPE 223, Winter 2018, State-transition diagrams 7
Example. Let � = {0, 1} and de�ne

S1 = �∗01�∗

S2 = {w ∈ �∗ | w has an even number of 1's }The following state diagram reognizes S1 ∪ S2:
����-

��������*

HHHHHHHj

ε

ε

State diagram for S1
State diagram for S2

Figure 6: A state diagram for S1 ∪ S2.A state diagram with ε-transitions is alled an ε-NFA.Given an ε-NFA M we an onstrut an equivalent NFA without ε-transitions as follows(see page 183 in the textbook):1. Make a opy M ′ of M where the ε-transitions have been removed. Remove states thathave only ε-transitions oming in, however, the starting state is not removed.2. Add transitions to M ′ as follows: whenever M has a hain of ε-transitions followed bya \real" transition on x ∈ �, see Figure 7:
εεεε x pq ----- ��������������������Figure 7: A hain of ε-transitions followed by a \real" transition.

CISC/CMPE 223, Winter 2018, State-transition diagrams 8we add to M ′ a transition from state q to state p that is labeled by x. Note that here
q and p may be any states. For example, the above onstrution step is used also inthe ase where q = p.3. If M has a hain of ε-transitions from a state r to an aepting state, then r is madeto be an aepting state of M ′.

Example. How does the onstrution work with the state diagram:���� �������� ����- - -
0εFigure 8: An ε-NFA.

Example. The below state diagram (Figure 9) reognizes unsigned deimal numbers:
ε

ε

εε

digit
·

digit
�� --- ���������������������������� & %6?

��
?

��
Figure 9: An ε-NFA for unsigned deimal numbers.We onstrut an equivalent nondeterministi state diagram without ε-transitions (inlass).

Note: By ombining the above two transformations, that is, the elimination of ε-transitionsand the subset onstrution, we an always onvert a state diagram with ε-transitions to adeterministi state diagram.

CISC/CMPE 223, Winter 2018, State-transition diagrams 9
Applications: Natural language proessingNoam Chomsky, one of the pioneers of language theory, showed already in the 50's thatEnglish (or any natural language) is not a �nite-state language. Natural languages ontainunlimited nested dependenies, and it is impossible to onstrut a �nite automaton thatkeeps trak of suh dependenies. Next week (in setion 9.4) we will develop tehniquesthat allow us to formally prove that a given language annot be reognized by any �niteautomaton.For many deades, omputational linguistis onentrated on more powerful formalisms,namely on extensions of ontext-free grammars (that we will study in hapters 10 and 11).However, �nite-state mahines have made a omebak in modern natural language pro-essing [1℄. It turns out that writing large-sale high-level grammars for languages suh asEnglish is very hard. Although English as a whole is not a �nite-state language, there aresubsets of English for whih a �nite-state desription is quite adequate and muh easier toonstrut than an equivalent (phrase-struture) grammar. Also it was disovered that formaldesriptions of phonologial alterations used by linguists were, in fat, �nite-state models.Researhers have developed speial �nite-state formalisms that are suited for the de-sription of linguisti phenomena, and ompilers that eÆiently produe �nite automatafrom suh desriptions [1℄. The automata in linguisti appliations are muh too large andomplex to be produed by hand. For example, the transition tables of automata used fortext{to{speeh translation of languages suh as English, Frenh or German typially require25{30 Mbytes.
References[1℄ K.R. Beesley and L. Karttunen: Finite State Morphology, CSLI Publiations, 2003.Web page for the book: http://www.fsmbook.com

