
1
State-transition diagramsThis material is from Chapter 8 in the textbook.
Example. An identi�er 
an be de�ned as a string of letters and digits that begins with aletter.

• Token letter stands for any of the symbols a, . . . , z, A, . . . , Z.
• Token digit stands for 0, 1, . . . , 9.The set of identi�ers is spe
i�ed by the state-transition diagram in Figure 1.

letter

letter, digitFigure 1: A state-diagram for spe
ifying identi�ers.
Example. We design a \sequential lo
k" as des
ribed below. The lo
k has 1-bit sequentialinput. Initially, the lo
k is 
losed. If the lo
k is 
losed it will open when the last three inputbits are \1", \0", \1", and then remains open.In other words, the state-transition diagram should a

ept exa
tly all strings that 
ontainsubstring 101. The state-transition diagram will be 
onstru
ted in 
lass.What is a regular expression that denotes the same language?A state diagram des
ribes a deterministic finite automaton (DFA), a ma
hine thatat any given time is in one of �nitely many states, and whose state 
hanges a

ording to apredetermined way in response to a sequen
e of input symbols.



CISC/CMPE 223, Winter 2018, State-transition diagrams 2A formal de�nition is given below.
Definition. A DFA is de�ned as a tuple

M = (Q,�, δ, s, F )where the 
omponents are as follows:
• Q is the �nite nonempty set of states
• � is the input alphabet
• δ : Q× � −→ Q is the transition fun
tion
• s ∈ Q is the starting state
• F ⊆ Q is the set of a

epting statesA �nite state automaton (DFA) is 
onveniently spe
i�ed using a state diagram, espe
iallywhen the set of states is small.

Example. Consider the state diagram in Figure 2.
1

10

0

1

0

1

q1 q2

q3q
4

0

Figure 2: A state-transition diagram.In a formal notation this automaton 
an be spe
i�ed as
M = (Q,�, δ, s, F )



CISC/CMPE 223, Winter 2018, State-transition diagrams 3where
• the set of states is Q = {q1, q2, q3, q4},
• the input alphabet is � = {0, 1},
• the starting state is q0,
• the set of a

epting states is {q3, q4}, and
• the transition fun
tion δ : Q× � −→ Q is given by the below transition table:Current state/input 0 1

q1 q1 q2
q2 q4 q3
q3 q3 q4
q4 q3 q1In a state diagram the starting state is denoted by a 
ir
le with an \in
oming arrow"and an a

epting state is denoted by a double 
ir
le.

Note: A state diagram has only one starting state. There 
an be more than one a

eptingstates (or no a

epting states).On the other hand, when a DFA is implemented a graphi
 state diagram notation is notsuÆ
ient. One needs to, basi
ally, give names for the states and en
ode the transition tablein the 
ode, see the examples in se
tion 8.2 of the textbook.
Definition. A state diagram (or DFA) accepts a string

c1c2 · . . . · cnif there is a path from the starting state to an a

epting state that is labeled by symbols
c1, . . . , cn. The language recognized by the state diagram (or DFA) 
onsists of all stringsa

epted by it.



CISC/CMPE 223, Winter 2018, State-transition diagrams 4
Example. Constru
t a state diagram for re
ognizing 
omments that may go over severallines:
/* ......*/

Nondeterminism

• The state diagrams that we have 
onsidered up to now were deterministic: for anystate and input symbol pair there 
an be at most one outgoing transition.
• A nondeterministic state diagram allows the following type of situations:

b

bFigure 3: Nondeterministi
 transitions.
When dealing with nondeterministi
 state diagrams it is important to remember thatnow a given string may label more than one path beginning from the starting state and wehave to be 
areful how the a

eptan
e of a string is de�ned:

Nondeterministic acceptance: a string is a

epted if it appears on any path from the startingstate to an a

epting state.



CISC/CMPE 223, Winter 2018, State-transition diagrams 5
Why nondeterminism?

• Often it is mu
h easier to 
onstru
t a nondeterministi
 state diagram than a determin-isti
 one.
• A nondeterministi
 state diagram 
an be much smaller than the smallest possibledeterministi
 state diagram that re
ognizes the same language.
• On the other hand, it is not immediately 
lear how we 
an implement nondetermin-isti
 state diagrams sin
e program behavior is deterministi
 (or, at least, it should bedeterministi
). Fortunately, there is a way to 
onvert a nondeterministi
 state diagraminto an equivalent deterministi
 one, and the 
onversion 
an even be automated.
Example. Consider the following nondeterministi
 state diagram with input alphabet
{0, 1}:

000

0, 10, 1

Figure 4: A nondeterministi
 state diagram.
– Where does the nondeterminism appear in the state diagram of Figure 4?
– What is the language re
ognized by the state diagram of Figure 4?
– How would you 
onstru
t an equivalent DFA?Nondeterministi
 state diagrams are also 
alled nondeterministic finite automata, NFA.



CISC/CMPE 223, Winter 2018, State-transition diagrams 6An NFA 
an be implemented as a DFA using the so 
alled subset construction. Thesubset 
onstru
tion is explained on pages 179{181 in the textbook. We illustrate the subset
onstru
tion by applying it to the following example (to be done in 
lass).
Example. Consider the following NFA:

CBA
1

0, 1

00

0, 1

Figure 5: A nondeterministi
 state diagram.We 
onstru
t a DFA that is equivalent to the NFA from Figure 5 using the subset
onstru
tion. The DFA keeps tra
k of the set of all possible states that the NFA may be inafter reading the 
urrent sequen
e of input symbols. The starting state is {A}. A set of statesis a

epting if it 
ontains at least one a

epting state of the original NFA. The transitions ofthe DFA are de�ned by following all possible nondeterministi
 transitions from the 
urrentstate (as explained on pages 179{181 in the textbook). The transition table and the statediagram of the DFA that is obtained by applying the subset 
onstru
tion to the NFA ofFigure 5 will be done in 
lass.
Question: How 
ould you simplify the resulting deterministi
 state diagram?
ε-transitionsSometimes it is 
onvenient to allow in nondeterministi
 state diagrams transitions thatdo not read an input token (\spontaneous" transitions). These are 
alled ε-transitions.
Note: A deterministi
 state diagram 
annot have ε-transitions.



CISC/CMPE 223, Winter 2018, State-transition diagrams 7
Example. Let � = {0, 1} and de�ne

S1 = �∗01�∗

S2 = {w ∈ �∗ | w has an even number of 1's }The following state diagram re
ognizes S1 ∪ S2:
����-

��������*

HHHHHHHj

ε

ε

State diagram for S1
State diagram for S2

Figure 6: A state diagram for S1 ∪ S2.A state diagram with ε-transitions is 
alled an ε-NFA.Given an ε-NFA M we 
an 
onstru
t an equivalent NFA without ε-transitions as follows(see page 183 in the textbook):1. Make a 
opy M ′ of M where the ε-transitions have been removed. Remove states thathave only ε-transitions 
oming in, however, the starting state is not removed.2. Add transitions to M ′ as follows: whenever M has a 
hain of ε-transitions followed bya \real" transition on x ∈ �, see Figure 7:
εεεε x pq ----- ��������������������Figure 7: A 
hain of ε-transitions followed by a \real" transition.



CISC/CMPE 223, Winter 2018, State-transition diagrams 8we add to M ′ a transition from state q to state p that is labeled by x. Note that here
q and p may be any states. For example, the above 
onstru
tion step is used also inthe 
ase where q = p.3. If M has a 
hain of ε-transitions from a state r to an a

epting state, then r is madeto be an a

epting state of M ′.

Example. How does the 
onstru
tion work with the state diagram:���� �������� ����- - -
0εFigure 8: An ε-NFA.

Example. The below state diagram (Figure 9) re
ognizes unsigned de
imal numbers:
ε

ε

εε

digit
·

digit
�� --- ���������������������������� & %6?

��
?

��
Figure 9: An ε-NFA for unsigned de
imal numbers.We 
onstru
t an equivalent nondeterministi
 state diagram without ε-transitions (in
lass).

Note: By 
ombining the above two transformations, that is, the elimination of ε-transitionsand the subset 
onstru
tion, we 
an always 
onvert a state diagram with ε-transitions to adeterministi
 state diagram.



CISC/CMPE 223, Winter 2018, State-transition diagrams 9
Applications: Natural language pro
essingNoam Chomsky, one of the pioneers of language theory, showed already in the 50's thatEnglish (or any natural language) is not a �nite-state language. Natural languages 
ontainunlimited nested dependen
ies, and it is impossible to 
onstru
t a �nite automaton thatkeeps tra
k of su
h dependen
ies. Next week (in se
tion 9.4) we will develop te
hniquesthat allow us to formally prove that a given language 
annot be re
ognized by any �niteautomaton.For many de
ades, 
omputational linguisti
s 
on
entrated on more powerful formalisms,namely on extensions of 
ontext-free grammars (that we will study in 
hapters 10 and 11).However, �nite-state ma
hines have made a 
omeba
k in modern natural language pro-
essing [1℄. It turns out that writing large-s
ale high-level grammars for languages su
h asEnglish is very hard. Although English as a whole is not a �nite-state language, there aresubsets of English for whi
h a �nite-state des
ription is quite adequate and mu
h easier to
onstru
t than an equivalent (phrase-stru
ture) grammar. Also it was dis
overed that formaldes
riptions of phonologi
al alterations used by linguists were, in fa
t, �nite-state models.Resear
hers have developed spe
ial �nite-state formalisms that are suited for the de-s
ription of linguisti
 phenomena, and 
ompilers that eÆ
iently produ
e �nite automatafrom su
h des
riptions [1℄. The automata in linguisti
 appli
ations are mu
h too large and
omplex to be produ
ed by hand. For example, the transition tables of automata used fortext{to{spee
h translation of languages su
h as English, Fren
h or German typi
ally require25{30 Mbytes.
References[1℄ K.R. Beesley and L. Karttunen: Finite State Morphology, CSLI Publi
ations, 2003.Web page for the book: http://www.fsmbook.com


